

22 al 26 de OCTUBRE 2012

COMPLEJO FERIAL CÓRDOBA - CIUDAD DE CÓRDOBA . ARGENTINA

North American Approach to Asphalt Mix Design and Production

Gerald Huber
 Heritage Research Group

IX CONGRESO INTERNACIONAL ITS XXXVII REUNIÓN DEL ASFALTO

SEMINARIO INTERNACIONAL DE PAVIMENTOS DE HORMIGÓN

www.congresodevialidad.org.ar

Understanding the Past

1890 E.G. Love

- Engineering and Building Record
- Articles on paving streets
 - Brick
 - Cobblestones
 - Wood pavers
 - Concrete
 - Asphalt

Philadelphia 1911

Lake Trinidad Asphalt (Barber Co.)

- First HMA (1870's)
 - Pennsylvania
 Ave.
- Naturally
 occurring from lake in Trinidad

XXXVII REUNIÓN DEL ASFALTO CÓRDOBA, 2012

Barber Asphalt Paving Company

- Recipe Design
 - 70 to 83% sand
 - 5 to 15% lime
- Sand heated to 150°C
 - Lime added cold
 - Amount adjusted visually
 - Asphalt added

Barber Design

- Cushion Coat (Top Lift)
 14 to 19% Asphalt
- Surface Coat
 - 12 to 15% Asphalt
- Macadam

Clifford Richardson (1905)

- New York Testing Company
- Published book

- "The Modern Asphalt Pavement"

Pavements built in 1890s and 1900s

Typical 1900s Pavement

Surface Recipe Design

- Components (typical)
 - 78% sand
 - 12% lime
 - 10% asphalt
- Sand heated to 300°F
 - Asphalt added
 - Lime added cold
 - Amount adjusted visually
- Paper Pat Test
 - Brown paper
 - Mixture dumped on to paper

Good Performing Surface Mix

- Asphalt Content 11%
- Gradation
 - #10 100
 - #40 87%
 - #80 49%
 - #200 15%
- Air Voids approx 0%
 - No weathering
 - No cracking
 - No disintegration

Toronto 1890s

Asphalt Concrete as Surface Mix

- Developed by Barber Company –1902 Project
 - Asphalt
 7.4%
 VMA
 16.4%

Hubbard Field Mix Design (1920s)

- Compact Mixture
 with rammer
- Specifications
 - Air voids
 - Voids in compacted aggregate
 - Hubbard Field Stability

Marshall Method of Mix Design (1930s)

- Developed by Bruce Marshall of Mississippi Department of Highways
- In 1943 Marshall joined Corps of Engineers
- Adopted by Corps
 - World War II
- Post WWII method was applied to highways

Marshall Mix

- Used drop hammer instead of hand rammer
- Air voids calculated
- Stability test
 - Geometry different than Hubbard Field
- No VMA
- No absorption Added in 1960s

Strategic Highway Research Program (1990s)

- Performance-Based Asphalt Binder Specification
- Performance-Based Mixture Specification
- Mix Design System

Result of SHRP Research

 Performance Based Asphalt Binder Spec

Performance Based
 Asphalt Mixture Spec

 Performance Based Mix Design System

Understanding HMA

HOT MIX ASPHALT

- Hard elastic particles
- Visco-elastic, visco-plastic asphalt binder
- Effected by
 - Asphalt binder properties
 - Aggregate properties
 - Proportion of each

Effect of Temperature

150C

How hard is the water?

ASPHALT BINDER

Solid Behavior

Percent Crushed Particles

0% Crushed

100% with 2 or More Crushed Faces

Fine Aggregate Angularity

Natural sands: typically 37 to 44

Manufactured sands: typically 42 to 52

Asphalt Mixture Behavior

Asphalt Mixture Properties

• Linear Elastic

- Non-linear Elastic
- Visco-elastic

• Plastic

MIX PROPERTIES

Rut Resistance

Low Air Voids

Rut Resistance

Rut Resistant

Sieve Size (mm) Raised to 0.45 Power

Aggregates in Hot Mix

- KEY to non-rutting pavements
 - Crushed aggregate, coarse and fine
 - Adequate void properties

LOW TEMPERATURE CRACKING

• Effected by

- PG low temp grade

Fatigue Cracking

Asphalt in Hot Mix

- KEY to fatigue resistant pavements
 - Sufficient asphalt
 - Sufficient thickness

Durability

Asphalt in Hot Mix

- KEY to durable pavements
 - Sufficient asphalt
 - Sufficient density

EXXXVII REUNION DEL ASFALTO KORDOBA, 2012

- Air voids (lab)
- Asphalt content
- In-place density
- Crush faces
- Binder grade

Rutting

Fatigue Cracking

Low Temperature Cracking

HMA Acceptance Properties

- Manufacturing Properties
 - Asphalt binder grade
 - Asphalt content
 - Air voids (laboratory)
 - Voids in Mineral Aggregate
- Installation Properties
 - In-place density

Core Elements of a Quality Program

Contractor Responsibility for Quality Control

 Under a QA program, responsibility for QC is assigned to the contractor

Scope of QC Activities

- QC Key Activities:
 - Materials production and transportation
 - Field placement processes

- QC Processes:
 - Sampling and testing
 - Inspection
 - Storage

Quality cannot be tested nor inspected into an HMA pavement. It must be built in through the implementation of Quality Control and Acceptance programs.

AASHTO Sub-committee OR DOBEA, 2012 On Materials

"Developing a Quality Assurance Plan for Hot-Mix Asphalt (HMA)"

Standard R-42

Standard Practice -- R 42

- Presents details necessary to effectively control the *production and placement* of Hot-Mix Asphalt (HMA)
- Provides foundation (minimum requirements) for Construction Quality

AASHTO R 42 Contains

- Functions and Responsibilities
- Sampling
- Material Requirements
- Field Adjustments
- Quality Control Systems
- HMA Acceptance Procedures
- Dispute Resolution

Quality Control Systems

- QC Plan for Asphalt Binder Materials
- QC Plan for Aggregate Production
- QC Plan for HMA Production
- QC Plan for Roadway Operations

Quality <u>CANNOT</u> be tested nor inspected into an HMA pavement. It must be <u>BUILT IN</u> through the implementation of Quality Control and Acceptance programs.

Aggregates

Stockpile gradation
Stockpiling

CORDOBA, 2012

- Blended aggregate
 - Cold bin loading
 - Plant calibration
- Moisture content
 - Plant calibration

Testing Plan

- Binder Content
- Gradation
- Moisture Content
- Bulk Specific Gravity
- Maximum Specific Gravity

Asphalt Binder Content

- Options include
 - Ignition Oven
 - Extraction
 - Nuclear

Gyratory Specimens

- Agency Acceptance
 - 1/1000t Base & Inter
 - 1/600t Surface
- HMA (Certification)
 - First 250t & each 1000t for Base & Inter
 - First 250t & each 600t for Surface

XXXVII REUNIÓN DEL **ASFALTO** CÓRDOBA, 2012

HMA Bulk Specific Gravity AASHTO T166

XXXVII REUNIÓN DEL ASFALTO CÓRDOBA, 2012

Maximum Specific Gravity AASHTO T209

Mixture Temperature

 Verify plant mix temperatures are consistent

Quality Control Limits

Parameter	Control limit (single test)
Aggregate Stockpile	³ ⁄4 in. – No. 200
Blended Aggregate	³ ⁄4 in. – No. 200
Binder content-mixture	± 0.7
VMA @ N _{des} , % (QC/QA HMA)	± 1.0
VMA @ N ₁₀₀ , Min % (SMA)	17.0
Target Air Voids % (Dense graded mixtures, SMA)	± 1.0

Control Charts

Control Charts

- Per mixture
 - Asphalt Binder Content
 - Air Voids
 - VMA

AASHTO Sub-committee on Materials

Standard - R 9

Hot Mix Asphalt Acceptance Sampling Plans For Highway Construction

Standard Practice -- R 9

• 1.2 "Purpose of Acceptance Plan—

Guidelines in the preparation of <u>statistically</u> <u>based acceptance plans using statistical and</u> <u>quality assurance (QA) principles.</u>

- Preferred Method is Percent within Limits (PWL)
 - Statistical evaluation using mean and standard deviation

PWL with Two Limits

% Air Voids

PWL with One Limit

Standard Deviation

 A measure of the variability (i.e. spread) of data

Data within ± 1 Standard Deviation

EXXXVII CORDOBA, 2012 Data within **CORDOBA, 2012** : 2 Standard Deviations

Data within REUNION DEL ± 3 Standard Deviations **CÓRDOBA**, 2012

SFAIT

Steps for Estimating PWL

1. Obtain random samples

2. Compute

- Mean (\overline{x})

Lot

 $AC_1 AC_2 AC_3$

X, S

Q

83

USL

LSL

- Standard deviation (s)
- 3. Compute quality index (Q)
- 4. Convert Q to "estimated" PWL

Actual PWL

90 PWL

Example (cont'd)

X, S

Example (cont'd)

Recommended Criteria

- Air Voids: ± 1.2% of the target value for the mixture type,
 90 PWL for full pay
- VMA: 0.5 % and + 2.0% of the minimum design value for the mixture type,
 90 PWL for full pay
- Pavement Density: minimum of 92% of the mixture TMD, 90 PWL for full pay
- **Binder Content**: ± 0.4% of the target value for the mixture type, 90 PWL for full pay

Example Pay Factor

- Binder Content: 35% of pay factor
- Air Voids: 25% of Pay Factor
- VMA: 10% of Pay Factor
- Pavement Density: 30% of Pay Factor

PWL Positive Qualities

- Consistency is rewarded
- Uniformity in construction and materials helps in pavement service life
- PWL encourages greater understanding of materials – cause and effect

PWL Negative Qualities

- Complex calculations to get pay factor
- Penalty possible even if all tests are within the specified limits
 - High standard deviation

PWL

- Make contractor think different about production of HMA mixtures from raw materials to plant production to lay down operation.
- Contractor will learn a lot about the cause and effects of all their QC decisions

Summary

- History of Mix Design
- Development of Superpave Mix Design
- Volumetric Properties to Control Mechanical Properties
- Acceptance Method for Volumetric Properties