

22 al 26 de OCTUBRE 2012 COMPLEJO FERIAL CÓRDOBA - CIUDAD DE CÓRDOBA . ARGENTINA

Best Practices for Concrete Road Pavement Construction

Mark B. Snyder, Ph.D., P.E.

President, International Society for Concrete Pavements Vice-President, ACPA – Pennsylvania Chapter

IX CONGRESO INTERNACIONAL ITS XXXVII REUNIÓN DEL ASFALTO

SEMINARIO INTERNACIONAL DE PAVIMENTOS DE HORMIGÓN

www.congresodevialidad.org.ar

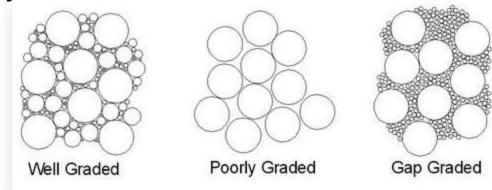
Concrete Paving

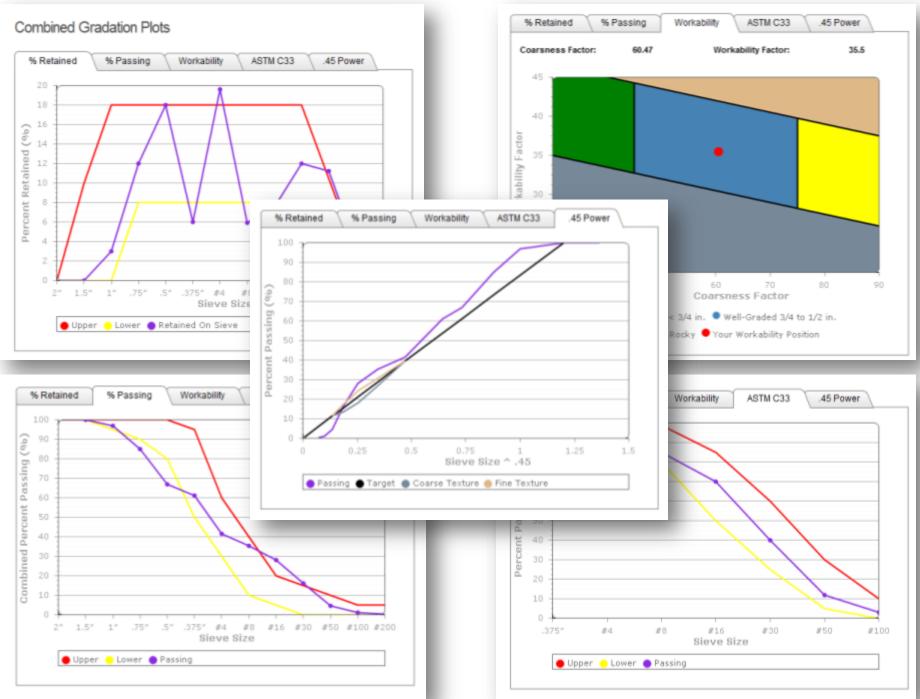
Critical Factors

- A good concrete mixture
- A good grade & trackline for paving
- Stringline management
- Continuous supply of concrete to paver
- Consistent concrete workability
- Well maintained paving equipment
- Proper operation of paving equipment
- Controlled density of concrete just the right vibration & finishing
- A skilled and dedicated crew

Key Properties of Concrete

- Workability
- Durability
- Strength




(Workability and durability are as important as strength)

Aggregate Gradation

- CONTROLS workability!!
- Well-graded combined aggregate
 gradation will:
 - Reduce water demand
 - Lower drying shrinkage
 - Increase workability
 - Improve strength

Aggregate Bins

7

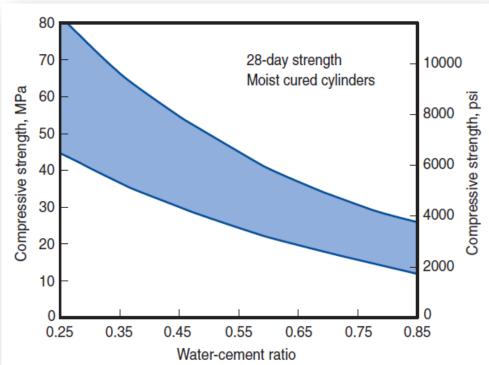
Cement

- The "glue" that holds concrete together
- More cement *can* mean more strength, but:
 - Need more air entraining admixture for desired air
 - Need more water, resulting in more drying shrinkage
 - Increased risk of segregation with more paste
 - More bleed water, increasing permeability
 - Earlier sawing required
 - Stiffer mixture
 - Less fatigue capacity

Cementitious Materials Content

 Use no more cementitious material than is necessary to meet strength and workability

- Typical minimum is about 300 kg/m³ for slipform


Material	Maximum Dosage (%, by weight)		
Fly ash	25%		
Slag cement	40%		
Total of fly ash and slag cement	50%		

• SCMs may retard strength gain

Water-Cementitious Mat'l Ratio

- Lower w/cm = higher strength, durability
 - Slipform paving: 0.45 max (0.40 typ)
 - Fixed-form paving/hand pours: 0.50 max
 (0.45 typ)
 - For w/cm below about 0.40, autogenous shrinkage may be a concern.

Dowel Bar Options: many products are available

Dowels Bars

- Corrosion resistant dowels a must
 - Stainless steel or zinc clad (~\$12 to \$20)
 - FRP but effectiveness not proven yet
 - Epoxy coated (low cost option) (~\$4 to \$5)
- 37 mm diameter minimum for t \geq 300 mm
- Can reduce no. of dowels middle 2 to 3 dowels not necessary

- May use 9 (5&4) or 10 (5&5) to reduce cost

• Length = 450 mm

FRP Dowels

Modifying FRP Dowel LT System Design for Structural Equivalence with Metallic Dowels

Diameter (mm)	Dowel Modulus, E (GPa)	Applied Shear Force (kN)	Dowel Deflection at Joint Face (mm)	Bearing Stress (MPa)
38	4.1	8.6 (300mm	0.023	0.203
		spacing)		
38	0.8	8.6 (300mm	0.038	0.312
		spacing)		
49	0.8	8.6 (300mm	0.023	0.201
		spacing)		
38	0.8	5.6 (200mm	0.023	0.203
		spacing)		
	(mm) 38 38 49	(mm) (GPa) 38 4.1 38 0.8 49 0.8	(mm)(GPa)(kN)384.18.6 (300mm spacing)380.88.6 (300mm spacing)490.88.6 (300mm spacing)490.88.6 (300mm spacing)380.85.6 (200mm	Diameter (mm)Dowel Modulus, E (GPa)Applied Shear Force (kN)Deflection at Joint Face (mm)384.18.6 (300mm spacing)0.023380.88.6 (300mm spacing)0.038490.88.6 (300mm spacing)0.023490.88.6 (300mm spacing)0.023380.88.6 (300mm spacing)0.023380.88.6 (300mm spacing)0.023380.88.6 (300mm spacing)0.023

There is additional deflection across the joint ...

Quality Starts from the Ground Up

- Roadbed (subgrade and subbase) design and construction are key to:
 - Long-term performance
 - Smoothness (initial and long-term)

What is Good Support?

Uniformity in material and grading (most important!)

Resistant to erosion

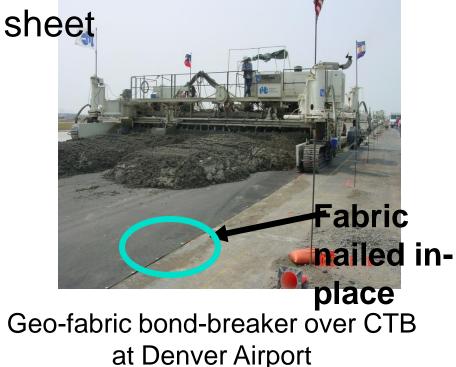
Engineered to control subgrade soil expansion/frost heave

Place Base to Specified Tolerances

- Enhance pavement performance
- Minimize loss of concrete
- Minimize/eliminate thickness penalties
- Enhance smoothness

Stabilized Bases

Stabilized bases – SC, CTB, ATB, PATB Strength issue for SC/CTB/LCB Specify min/max values (7 DAY 5.0/8.0 MPa psi common) Base stiffness affects pavement performance Potential for random cracking high for very stiff bases



Interface with Cement-Stabilized Base

➢Bonded (match joints)

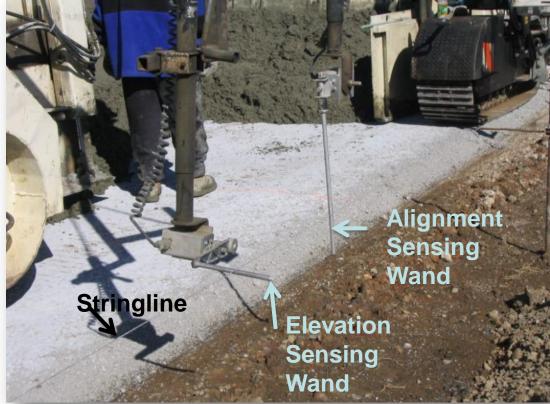
 Unbonded: asphalt emulsion, curing compound (double-coat), 25 – 50mm asphalt concrete (Austria), 5mm thick geotextile (Germanv). Geo-fabric. plastic

5 mm geotextile over CTB (German practice)

Track Line & String Line

- Extend base 1 m beyond outside edge of pavement - keep it clean
- String line management very important to final smoothness of pavement

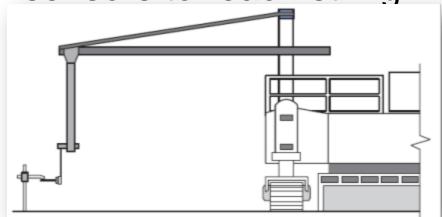
STRINGLINE AIDS •Use rigid stakes •Use quality line •Monitor & maintain line



Stringlines

- Stringlines control the "steering" of the paver
- Stringlines control the elevation and slab thickness

Set Stringline


- Can be wire, cable, woven nylon, polyethylene rope, or another similar material
- Clean and tight splices
- Rigid stakes watch for staking errors
- Maximum stake spacing of 25 ft
 - No perceptible sagging
 - Adjust stake spacing to fit conditions
 - See Staking Interval Calculator at apps.acpa.org for recommendations on curves

Stringline Considerations (cont.)

- Continually check tension
- Place winches at ≤ 300 m
- Stringlines on both sides of paving?
- Some situations require cantilever or trusses for sensors to reach stringline

Stringless Paving: Example

Leica's "Direct Connect" 3D Control System Software communicates directly with networked Microprocessor Control System

Concrete Placement

- Deposit concrete as close to paver as possible
- Avoid stop & go operation
- Maintain uniform speed & head
- No front end loaders or backhoes to distribute concrete

Concrete Placement Issues

- Do not add water to concrete in front of paver
 - Reduced strength
 - Reduced durability

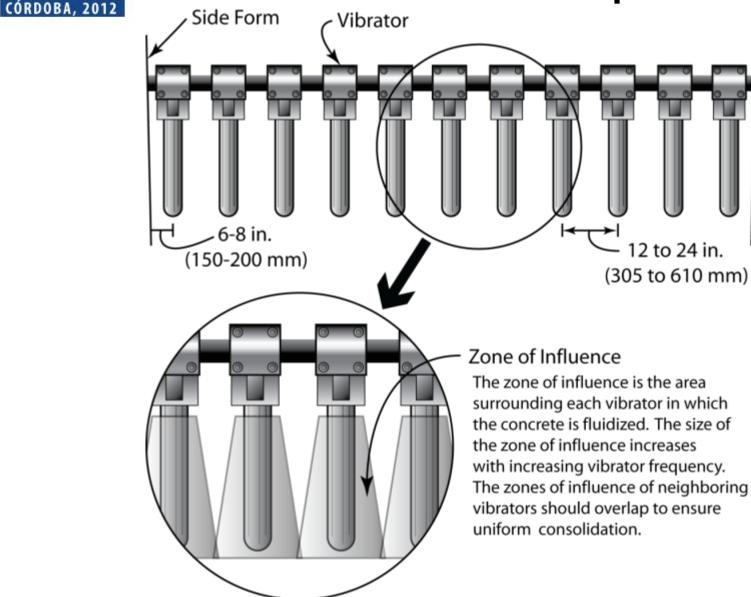
- Proper vibration effort
 - Control consolidation across paving width
 - Provide just enough fines at surface for a tight finish

Consolidation

- The internal vibrators on the paver fluidize the concrete for extrusion
- Adequate consolidation
 - Required around dowels and tie bars
 - Throughout the slab

Consolidation

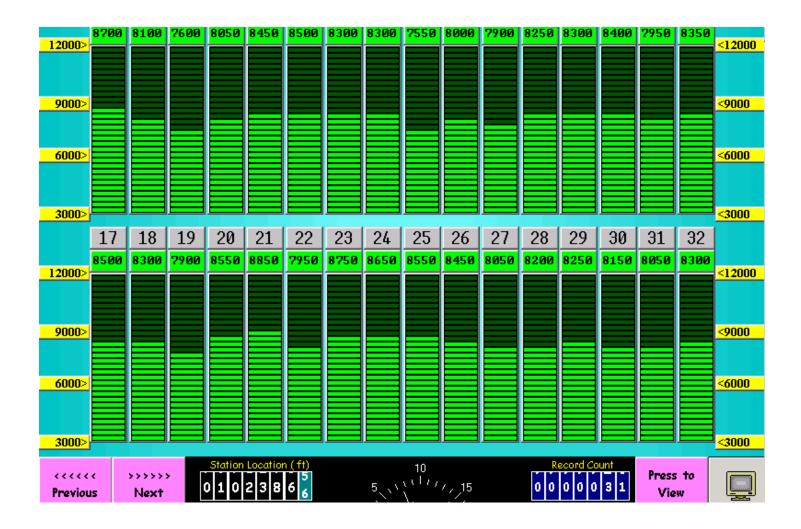
Lower in-place strength, honeycombing


Over-Consolidation

 Over vibration can cause settlement, loss of air void system, less durable concrete

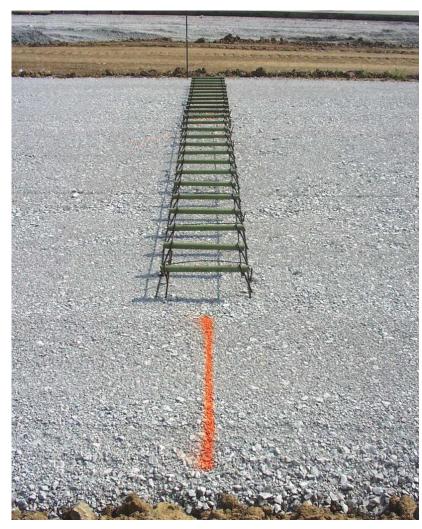
Vibrator Setup

Congreso Argentino de Vialidad y Tránsito



Effect of Paver Speed on Consolidation

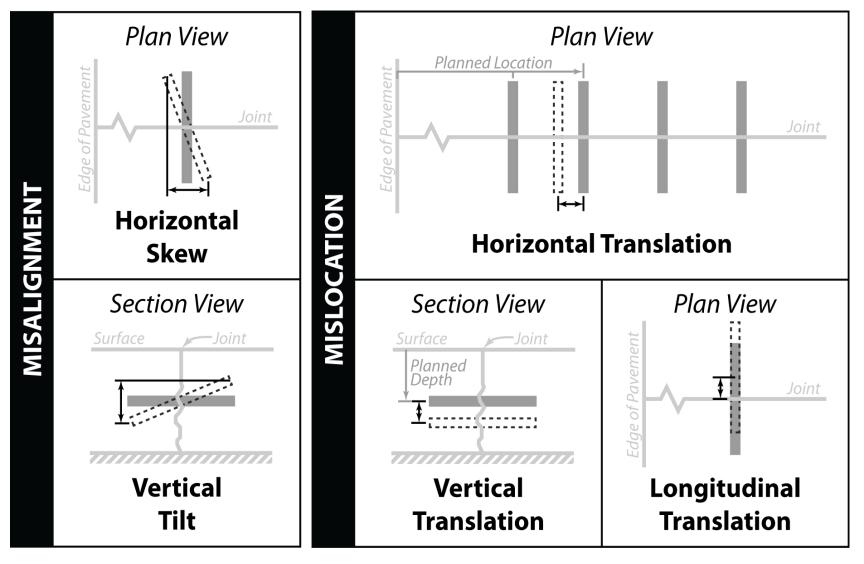
Vibrator Sensor Monitoring



Dowel Bars and Tiebars

- Pre-placed bars
 - Staked adequately
 - Cut/don't cut the tie wires
 - Careful marking of location
- Inserted bars

Staking Dowel Baskets



Dowel Bar Placement Issues

- Baskets
 - Basket rigidity (wires/design)
 - Basket stability cut shipping wires (?), anchor type/length, base stability
 - Dowel debonding agent
 - Basket length
- Mechanical implantation
 - Consolidation around dowel bars
 - Dowel debonding agent
 - Dowel alignment

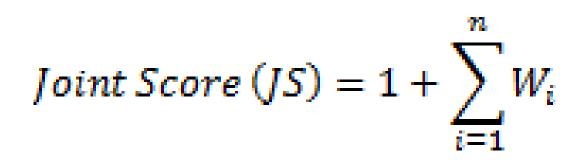
Dowel Bar Misalignment Categories

Dowel Misalignment Examples

Dowel Bar Alignment Testing

German MIT SCAN Device

Ultrasonic (MIRA) and GPR (Hilti) devices are also available.


Dowel Bar Misalignment Limits

- Skew (vertical or horizontal):
 - Accept: < 15 mm per 450 mm</p>
 - Action: > 15 mm per 450 mm
- Horizontal Translation:
 - Accept: < 50mm</p>
 - Action: >100mm or less than 75mm to edge
- Long. Translation :
 - Accept: ≤ 50mm
 - Action: <u>></u> 125mm
- Vertical Translation (Depth):
 - Accept: <25mm and > 5mm clearance to saw cut
 - Action: <65mm concrete cover (top or bottom) or <5mm clearance to saw cut

Dowel Bar Misalignment Joint Score

Single Dowel Total Misalignment (mm)	Weighting Factor, W
< 15 mm	0
15 – 20 mm	2
20 – 25 mm	4
25 – 38 mm	5
<u>></u> 38 mm	10

Dowel Bar Misalignment Joint Score

Joint Score	Risk of Joint Lockup
<u><</u> 5	Very Low
5 – 10	Low
10 – 15	Moderate
> 15	High

Joint Score Limits: Accept: <a> 10 Action: All joints in MALL have JS >10

MALL= Maximum Acceptable Locked Length = 20m, including no more than 3 locked joints

Finishing Operations

- Minimize hand finishing do not over-finish
 - Surface does not have to be super-smooth
- Longer straight edges produce smoother surface
- Do not add water to facilitate finishing if used, it should be fogged, not sprayed
- Finishers have final impact on smoothness and surface durability

Use 5-m float for smoothness

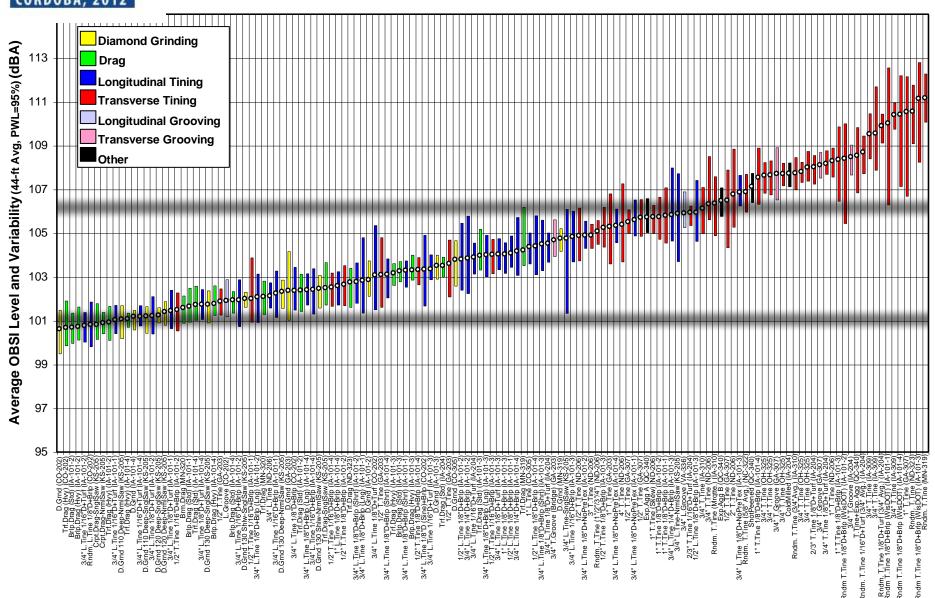
Need for finishing is minimized by
 Selecting a workable mix
 Properly operating the paving equipment

Concrete Texturing (affects safety & noise level)

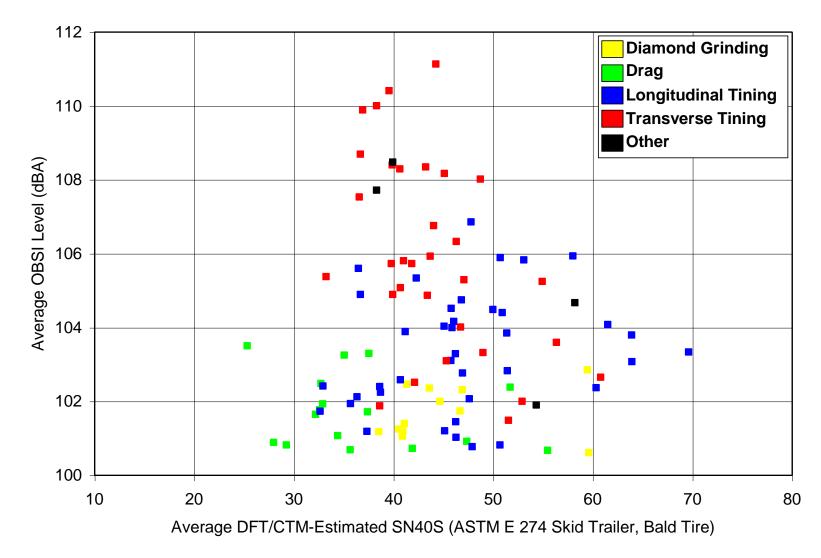
- Common Methods
 - Transverse tine (3 by 3 mm, random) out of favor!!
 - Longitudinal tine (3 by 3 by 20 mm) better/preferred?
 - Turf/broom drag
 - Diamond grinding (for new??)

Step 1 - Curing compound + retarder - water-repellent coefficient > 90 % (first 24 h)

Step 2 - Curing compound (applied after brushing)
- water-repellent coefficient > 85 %


Brushing Machine

Exposed aggregate surface 8 or 11 mm max size



Noise vs. Surface Texture

Noise vs. Friction

Concrete Curing

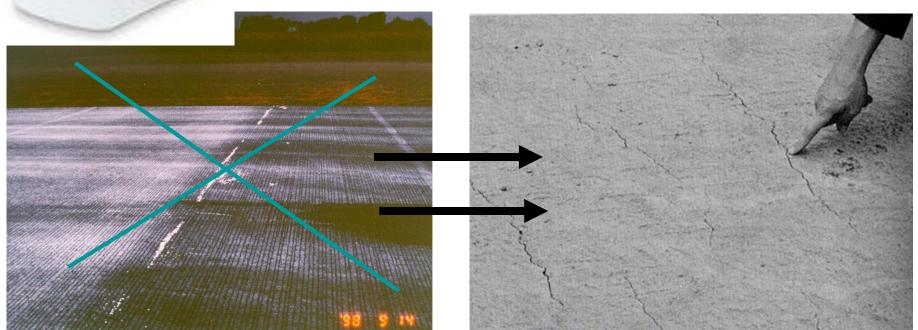
- Need to maintain adequate
 moisture & temperature regimes
- Inadequate curing leads to
 - Excessive moisture loss at surface = plastic shrinkage cracking
 - Weak surface => durability problems
 - Excessive slab warping (built-in warp)
- Must assure timely curing behind paver

Curing Methods

- Ponding/continuous sprinkling
- Burlap/cotton mats
- Plastic sheeting
- Curing compounds

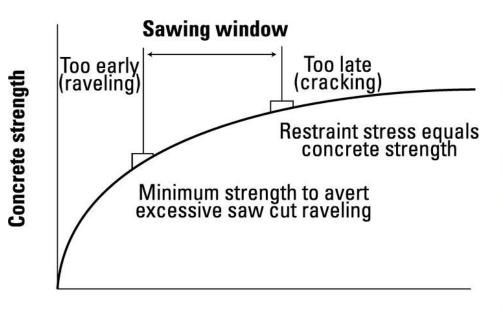
Curing Compounds

- Coating placed on concrete surface to prevent moisture loss
 - Resin or wax based
 - Clear or white-pigmented
- Advantages:
 - Easy to use not labor intensive
 - Economical
- ASTM C 309 & AASHTO M148 (Type 2, Class B)
- All curing compounds are not created equal even if they meet specs
 - Water retention is a key to successful curing



Curing Compound Application

- Time of application
 - Apply as soon as surface sheen has disappeared
- Use automated equipment for uniform coverage
- Cover all exposed surfaces (incl. sides)
 Re-apply at joints after sawcutting
- Typical application rate: 4 to 5 m²/l (150-200 ft²/gal) Curing time: Typically 72 to 96 hours
- Check nozzles regularly for uniform spray (avoid clogging)


Joint Sawing

- Why saw?
- Saw timing
 - Sawing window
 - Maturity testing
 - HIPERPAV
 - Early-entry saws– Joint width
- Mixture effects

Joint Sawing

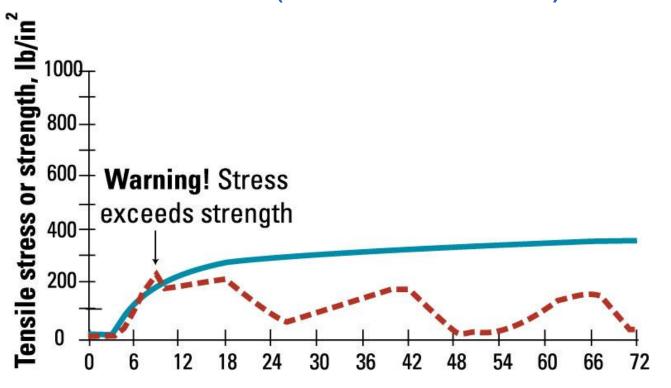
Time

a) No raveling—sawed later in the window

b) Moderate raveling—sawed early in the window

c) Unacceptable raveling—sawed too early

Figure 8-23. Close-up of different degrees of raveling caused by joint sawing (ACPA)



Factors that Shorten Window

Sudden temperature drop
High wind, low humidity
High friction base
Bonding between base & slab
Porous base (PATB)
Retarded set (delayed and shortened)
Delay in curing application

Crack Prediction with HIPERPAV (free download)

Elasped time since construction, hours

Joint Sawing QA/QC Issues

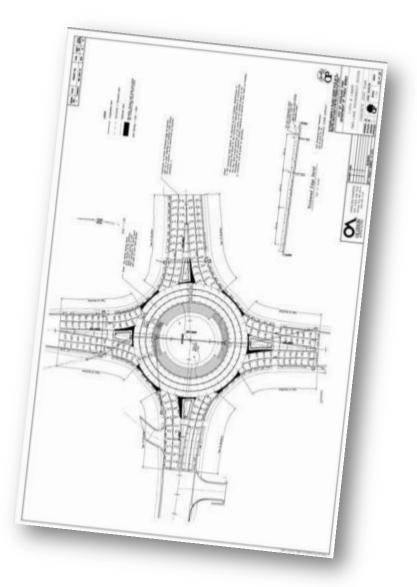
Check planned vs. actual locations

Check sawcut depth

Check sawcut carried through vertical edge

Joint Sealing

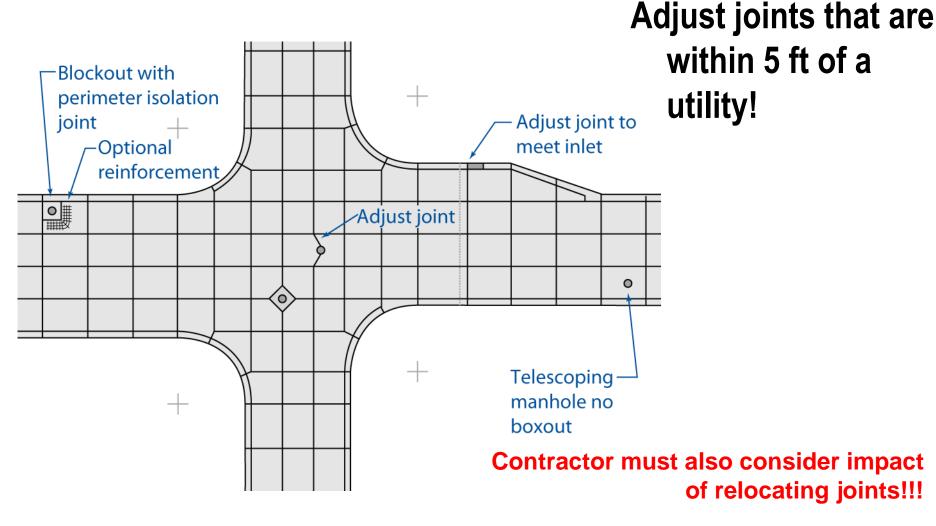
- Minimize infiltration of water and incompressibles
- Types
 - Hot pour
 - Silicone
 - Compressive seals
- Reservoir preparation
 - Clean
 - Shape
- Current debate: to seal or not to seal?


Joint Sealing Approaches

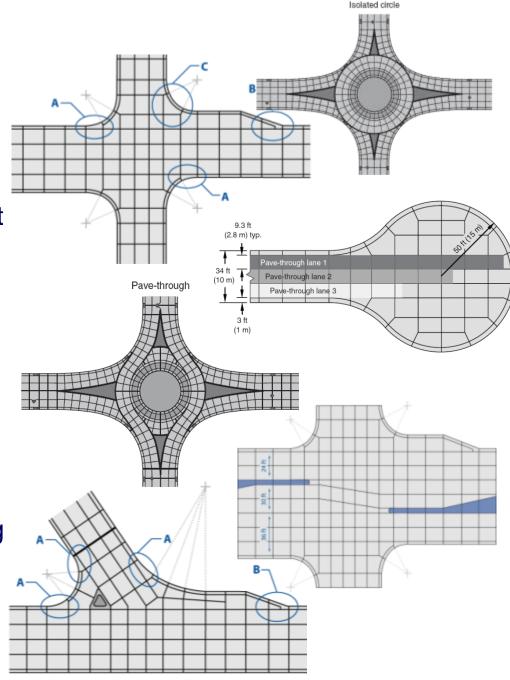
- Conventional Approach
 - Initial sawcut 3 mm
 - Widening cut for sealant reservoir shape factor
- Single cut Approach 4 to 5 mm
 - Narrow unsealed
 - Narrow filled
 - Narrow sealed

Joint Layout

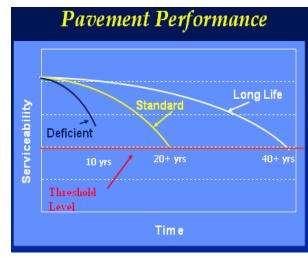
- Critical to crack control
- Typically decided by engineer
 - No knowledge of contractor, equipment, processes
 - Hard to precisely place things like utilities
- Field adjustments can and should be made



If Joints Aren't Properly Adjusted...


Field Adjustments are Necessary

Joint Layout Design


- EB237 Concrete Pavement Field Reference: Pre-Paving
- IS006, Intersection Joint Layout
- IS061 Design and Construction of Joints for Concrete Streets
- R&T Update 6.03 Concrete Roundabouts
- TB010 Design and Construction of Joints for Concrete Highways
- TB017 Airfield Joints, Jointing Arrangements and Steel
- TB019 Concrete Intersections: A Guide for Design and Construction

Summary: Cost of Poor Quality

- For highway agencies
 - Traffic congestion & accidents
 - Reduced service life
 - Higher life cycle costs
- For contractor
 - Corrective measures
 - Partial payments
 - Cost of claims (litigation)
 - Liquidated damages

Acknowledgements

- American Association of State Highway and Transportation Officials (AASHTO)
- American Concrete Pavement Association
- National Concrete Pavement Technology Center (Iowa State University)
- Shiraz Tayabji, Fugro Consultants, Inc.
- U.S. Federal Highway Administration Pavement Technology Program
- U.S. National Highway Institute