La Nueva AASHTO Guia de Diseno de Pavimentos Hormigon

Michael I. Darter Emeritus Prof. Civil Engineering, University of Illinois & Applied Research Associates, Inc. USA

> October 2012 Cordoba, Argentina

Current AASHTO vs. Current Needs

1996: AASHTO Decided New Design Needed

- 1998-2007: Development of new AASHTO design procedure.
- 2007: AASHTO Interim Mechanistic-Empirical Pavement Design Guide approved.
- 2011: New software DARWin-ME.
- Implementation by many States, Canadian Provinces, & Others since 2004.

Definitions

- Mechanistic-Empirical Pavement Design Guide, or MEPDG (now named DARWin-ME).
- Fundamental engineering mechanics as basis for modeling (stress, strain, deformation, fatigue, cumulative damage, etc.).
- Empirical data from field performance.
- M-E "Marriage" of theory and data.

AASHTO Interim DARWin-ME

AASHTO Interim DARWin-ME Manual of Practice

Pavement Characterization

For Each Layer:

- Physical properties
- Thermal properties
- Hydraulic properties

New Or Reconstructed JPCP

Joint spacing = 4 m Dowel Dia. = 27 mm

Composite Pavement, Phoenix, AZ

Concrete Pavement Restoration California

Restoration of joint load transfer, slab replacement (past damage), tied PCC shoulder, diamond grinding

JPCP Overlay Georgia

JPCP Overlay of Existing Asphalt

Kansas Turnpike

4 *m* joint spacing 33 *mm* dowels 3.9 *m* outer lane width

Design for Performance JPCP: Models

Joint Faulting= f(loads, dowels, slab, base, jt space, climate, shoulder, lane width, zero-stress temp, built-in gradient, ...)

Transverse Crack= f(loads, slab, base friction, subgrade, jt space, climate,shoulder, lane width, built-in temp grad, PCC strength, Ec, shrink, ...)

Slab Dimensions & Base Friction

- Slab thickness: 15 to >40-cm
- Slab width: conventional, widened
- Tied shoulders: load transfer
- Slab/Base friction: Full (typical)

Slab Thickness Vs. Cracking

Impact of Slab Width/Edge Support

Transverse Joints

- Need for dowels.
- Benefit of larger dowels.
- Transverse joint spacing.

Need for Dowels & Diameter

Joint faulting, in

Joint Spacing Effect: CA Project

Percent Slabs Cracked

Base & Subbase Materials, Thickness

Base types:

- unbound aggregate,
- asphalt,
- cement/lean concrete.
- Base modulus, thickness, friction with slab.
- Subbase(s): unbound aggregate, lime treated soils, cement treated soils, etc.

Subgrade / Embankment / Bedrock

- Soil types: all AASHTO classes with defaults for gradation, PI, LL, resilient modulus.
- Subgrade resilient modulus: changes due to temperature & moisture over year.
- Lime and cement treated soils.
- Thick granular layers.
- Bedrock layer.

Temperature & Moisture Effects

Unbound Aggregate Base Mr Vs Month

Concrete Slab/Base Contact Friction

Base Course (agg., asphalt, cement)

Subbase (unbound, stabilized)

Compacted Subgrade

Natural Subgrade

Bedrock

Concrete Slab & Structure Inputs

Concrete Coefficient of Thermal Expansion

Climate (temperature, moisture, solar rad., humidity, wind)

Integrated Climatic Model (ICM)

- User identifies local weather stations:
 - Hourly temperature, Precipitation
 - Cloud cover, Relative ambient humidity
 - > Wind speed.
- User inputs water table elevation.
- ICM Computes temperatures in all pavement layers and subgrade.
- ICM Computes moisture contents in unbound aggregates and soils.
- ICM Computes frost line.

Climatic Factors Slab Curling/Warping

Positive temp. gradient

Bottom Up Cracking

Negative temp. gradient & shrinkage of surface

Top Down Cracking

Slab Built-In temperature gradient during construction at time of set (solar radiation)

Traffic Loading

- Vehicle volume, growth & classification
- Single, tandem, tridem, quad axle load distributions
- Monthly vehicle distribution
- Hourly load distribution
- Lateral lane distribution
- Tire pressure
- Tractor wheelbase

Vehicle Class Distribution

- Level 1 Sitespecific distribution
- Level 2 Distribution for given highway class
- Level 3 DARWin-ME Truck Traffic Class (TTC)

Traffic Wander

Truck Wander

<u>Typical Values</u> X (mean) = 45.7 cm X (SD) = 25.4 cm

Design Reliability

- Design life: 1 to 100 years.
- Select design reliability: 50 to 99 percent
 - Transverse cracking
 - Joint faulting
 - Smoothness, IRI
- Standard error based on prediction error of distress & IRI from hundreds of field pavement sections.

Example Prediction of Transverse Fatigue Cracking

Example Prediction Joint Faulting

Example Prediction IRI

SHRPID=4_0262

DARWin-ME Software sold by AASHTO www.aashto.org

DARWin-ME Pavement Design Process

- 1. Trial design selection
- 2. Estimate inputs
- 3. Run software
- 4. Review computed outputs
- 5. Compare distresses & IRI with criteria
- 6. Design Reliability met?
- 7. Modify trial design as needed

Compare output distress & IRI

Does design meet performance criteria?

Performance Criteria	Distress Target	Reliability Target	Distress Predicted	Reliability Predicted	Acceptable
Terminal IRI (in/mi)	172	95	130	83.15	Fail
Transverse Cracking (% slabs cracked)	15	95	1.6	99.98	Pass
Mean Joint Faulting (in)	0.15	95	0.089	93.13	Fail

Reliability Level Impact for JPCP Project

Recommended Design Reliability Criteria: Arizona

Performance Criteria	Divided Highways, Freeways, Interstates	Non Divided, Non Interstate, 10,000+ ADT	2001 – 10,000 ADT	501-2,000 ADT	< 500 ADT
Design Reliability	97%	95%	90%	80	75

Modify Trial Design as Needed

 Here is where experience and knowledge of fundamental concepts of pavement behavior and performance counts!

Examples:

- Too high joint faulting? Increase dowel diameter
- Too high cracking? Increase thickness, shorter joint spacing, add tied PCC shoulders, treated base
- Too high IRI? Reduce distress, specify smoother construction

DARWin-ME Analysis Capabilities

- New Design: several alternatives
- Rehabilitation Design: several alternatives
- "What if" questions
- Evaluation: forensic analysis
- Construction deficiencies: impacts on life, \$
- Truck size and weight: cost allocation
- Acceptance quality characteristics: impact on performance, \$

Key Benefits of DARWin-ME Design

- Allows design for longer life pavements (checks for early distress)
- Allows designer to quantify costs & benefits
- Allows designer to optimize the design (biggest bang for \$)

Directly considers Performance

