

IRF	International Road Federation		
Possible Impacts of Climate Change			
Potential Clima Temperature	te Change of Relevance to U.S. Transportation	Level of Uncertainty	
Increases in very hot days and heat waves		Very likely	
Decreases in very cold days		Virtually certain	
Increases in Arctic temperatures		Virtually certain	
Later onset of seasonal freeze and earlier onset of seasonal thaw		Virtually certain	
Sea level rise		Virtually certain	
Precipitation			
Increases in intense precipitation events		Very likely	
Increases in drought conditions for some regions		Likely	
Changes	in seasonal precipitation and flooding patterns	Likely	
Storms			
Increases	s in hurricane intensity	Likely	
Increased and storn	d intensity of cold-season storms, with increases in winds and in waves n surges	Likely	
Level of Relevand	Uncertainty Associated with Potential Climate Changes of the to Transportation	Greatest	
Council, 2	2008.)	auonai research	

- The risk of forest wildfires in the American West is strongly associated with increased spring and summer temperatures and an earlier spring melt (Westerling et al. 2006)
- Therefore, wildfire-induced decreases in visibility are likely to become more frequent
- Transportation is significantly affected when visibility drops to less than about 400 m (0.25 mi)
- Times with such low visibility are associated primarily with fog, heavy precipitation, blowing sand or snow, or smoke from wildfires

IRF International Road Federation

IRF International Road Federation

IRF International Road Federation

Region	Temperature	Precipitation
Mexico	increase	decrease
Costa Rica		
 Pacific sector 	+3°C	-25%
 Southeast Caribbean sector 		small increase
Nicaragua		
 Pacific sector 	+3.7°C	-36.6%
 Caribbean sector 	+3.3°C	-35.7%
Brazil		
 Central and south central sector 	+4°C	+10 to +15% for autumn
		reductions for summer
	summer: +1.57°C (+1.08–	
Central Argentina	2.21°C)	summer: -12%
	winter: +1.33°C (+1.12-1.57°C) winter: -5%

IRF	International Road Federation	on		ASL
Roles of Major Modes of Transportation in Mitigating Climate Change Impacts				
 Light trans Thou fuel u 	duty vehicles alone acc portation sector's petrolo gh vehicle fuel efficiency isage from light-duty vel	ount for 68 eum usage y is greatly nicles conf	8% of the e / improving tinues to ind	, the total crease
Attrik	oute: Light-Duty Vehicle	1970	2007	Increase
Num. ve	chicle registrations (millions)	103.5	237.4	129%
Avg.	miles traveled per vehicle	10,081	11,720	16%
Fue	l consumed (million gal)	90,192	136,170	70%
Avg. fue	l consumed per vehicle (gal)	775	574	-26%
Avg. fue	l economy (miles per gallon)	13	20.4	57%
Avera	ige passenger per vehicle	1.9	1.64	-14%
Average	passenger-miles per gallon of fuel consumed	24.7	33.5	36%

(IRF International Road Fe

Roles of Major Modes of Transportation in Mitigating Climate Change Impacts

- Freight truck combined single-unit and combination trucks account for about 50% of freight transport in the U.S.
- As opposed to light-duty vehicles, average fuel usage for freight trucks is increasing with increased freight demand

Attribute: Heavy-Duty Vehicle	1980	2006	Increase
Fuel consumed (million gal)	19,960	37,918	90%
Avg. fuel consumed per vehicle (gal)	3,447	4,300	25%
Avg. fuel economy (miles per gallon)	5.4	5.9	9%
Num. registered trucks (million)	5.79	9.92	71%
Avg. miles traveled per vehicle	18,736	25,290	35%
Freight Ton-miles (million)	629,675	1,294,492	106%
Vehicle-miles of travel (million)	108,491	223,037	106%

	IRF Interna	ational Road Federatio	on		ASU
 Roles of Major Modes of Transportation in Mitigating Climate Change Impacts As jets become larger, they tend to become more fuel efficient per passenger carried 			igating e fuel		
I he amount of fuel, or energy, used per passenger mile has declined because of large gains in the airline industry's economic efficiency		ger mile e			
	Revenue pass (th	Airline Carriers enger enplanements ousand)	1970 153,662	675,212	339%
Ī	Revenue ton-mil	e of freight (thousand)	2,708,900	15,859,729	485%
Ī	Num. aircraft	available for service	2,690	6,758	151%
Ī	Seats	per aircraft	103	114	11%
Ī	Fuel consu	med (million gal)	7,857	13,458	71%
	Fuel per	seat mile (gal)	27	55	104%
	Energy intensity	(Btu / passenger mi.)	10,185	3,070	-70%

WIRF International Road Federation Data Needs and Availability for Decision Making Transportation decision makers note that one of the most difficult aspects of addressing climate change is obtaining the relevant information in the form they need for planning and design This difficulty is not limited to the transportation sector A recent National Research Council report (NRC Summing Up 195 2007) found that while the scientific understanding of climate change has made great progress, the use of that knowledge to support decision making and formulate mitigation and adaptation strategies is much less well developed

• This population swells in the summer months, as beaches are the top tourist destination (Douglass et al. 2005)

IRF International Road Federation

Vulnerability Assessment for Different Modes of Transportation

- Coastal areas are also major centers of economic activity
- Six of the nation's top 10 U.S. freight gateways (by value of shipments) (BTS 2007) will be at risk from sea level rise
- Seven of the 10 largest ports (by tons of traffic) (BTS 2007, 30) are located in the Gulf Coast, whose vulnerability was amply demonstrated during the 2005 tropical storm season

IRF International Road Federation
Vulnerability Assessment for Different Modes of Transportation
 Drier conditions are likely to prevail in the summer in midcontinental regions, such as the Saint Lawrence Seaway
 Weather and vessel incidents cause most of the lock downtime on the seaway, but in 2000 and 2001, water levels were at their lowest point in 35 years, reducing vessel carrying capacity to about 90 percent of normal (BTS 2005, 140)
 If low water levels become more common, freight movements could be seriously impaired, and extensive dredging could be required to keep shipping channels open (Great Lakes Regional Assessment Team 2000; Quinn 2002)

IRF International Road Federation

Vulnerability Assessment for Different Modes of Transportation

- The vulnerability of transportation infrastructure to climate change is in part a function of its robustness and degree of protection from exposure to climate change effects (as is the case, for example, with seawalls and levees)
- It also depends on the amount of redundancy in the system
- System redundancy proved critical to the rapid restoration of partial rail service during both Hurricane Katrina and the 1993 Mississippi River flood

IRF International Road Federation

- Yet the predominant trend has been for the railroads (as well as other owners of infrastructure) to shed uneconomical unused capacity by consolidating operations and abandoning underused lines
- Likewise, major businesses, both manufacturing and retail, have reduced operating costs through just-in-time delivery strategies, but with the effect of increasing their vulnerability to disruptions or failures of the transportation system from either natural or human causes

Vulnerability Assessment for Different Modes of Transportation

- For the next several decades, warming temperatures and melting sea ice are likely to result in increased variability in year-to-year shipping conditions and higher costs due to requirements for stronger ships and support systems (e.g., ice-capable ship designs, icebreaker escorts, search and rescue support) (ACIA 2004)
- In addition, improved access to remote areas may increase the risk of environmental degradation to fragile ecosystems

IRF International Road Federation

- With lower lake levels, ships will be unable to carry as much cargo, and hence shipping costs will increase, although some of the adverse economic impacts could be offset by a longer shipping season
- A recent study of the economic impact of climate change on Canadian commercial navigation on the Great Lakes, for example, found that predicted lowering of Great Lakes water levels would result in an estimated increase in shipping costs for Canadian commercial navigation of between 13 and 29 percent by 2050, all else remaining equal (Millard 2005)

- Landside facilities will be particularly vulnerable to flooding from an increase in intense precipitation events and to the impacts of higher tides and storm surges from rising seas
- The navigability of shipping channels is also likely to change. Some channels may be more accessible to shipping farther inland because of sea level rise
- The navigability of others, however, could be adversely affected by changes in sedimentation rates and the location of shoals
- In other areas, a combination of sea level rise and storm surge could eliminate waterway systems entirely

	International Road Federation	ASU
	Vulnerability Assessment for Different Modes of Transportation	
 Wai tem facil that 	ming temperatures and possible increases in perature extremes will affect airport ground lities—runways in particular—in much the same they will affect roads	way
 Mor prot Extr den The 	e heat extremes, however, are likely to be blematic, causing heat buckling of runways reme heat can also affect aircraft lift; hotter air is se, reducing mass flowing over the wing to creat problem is exacerbated at high-altitude airports	i less te lift

	Ż	IRF	International Road Federation
--	---	-----	-------------------------------

- A special case study of the transportation sector's response to and recovery from Hurricanes Katrina and Rita
- One of the primary objectives of this study was to examine the vulnerability of the transportation system to a major disruption, with a particular focus on the impact of an interruption on national-level movement of freight
- The Gulf Coast is one of the key economic and population centers of the U.S., home to more than 15 million Americans located in five states (Texas, Louisiana, Mississippi, Alabama, and Florida) and three major metropolitan areas

IRF International Road Federation

- Several of the nation's most heavily used ports are located along the Gulf Coast
 - Hurricane Katrina was the most destructive and costliest natural disaster in U.S. history, claiming more than 1,800 lives and causing an estimated \$75 billion in damage
- Hurricane Rita, exceeding Katrina in both intensity and maximum wind speed, claimed 120 lives and caused approximately \$10 billion in damage

GIRF International Road	Federation			
Vulnerability Assessment for Different Modes of Transportation				
	 The unusually large losses of life and physical destruction of Hurricane Katrina resulted from a levee failure and the inability of the floodwaters to recede because so much of New Orleans lies below sea level A failed evacuation plan for the car-less exacerbated the human toll 			

Witter Assessment for Different Modes of Transportation The pipeline network was shut down, producing shortages of natural gas and petroleum products Despite predictions of long-lasting transportation stoppages, however, the majority of the Gulf Coast highways, rail lines, pipelines, ports, and airports were back in service within weeks to a month The worst-damaged bridges took 3 to 6 months to repair. Three bridges that carry highway US-90 along the edge of the Gulf Coast failed to reopen until mid- to late 2007, approximately 2 years after they were destroyed.

GIRF International Road Federation	ASU
Vulnerability Assessment for Different Modes of Transportation	
 Lessons learned about the vulnerability of the transportation system from the experience with these two hurricanes: 	е
 The physical redundancies of a mature transportation syste provided sufficient alternative routes to keep freight flows m without major disruption 	em noving
 Where the infrastructure was privately owned (e.g., CSX Railroad), arrangements with other carriers enabled operation to continue 	ions

IRF International Road Federation
Vulnerability Assessment for Different Modes of Transportation
 Thus, redundancy of power and communications systems is also necessary for the rapid restoration and functioning of freight transportation networks
 Adequate manpower is critical to timely efforts to restore transportation services and staff restoration projects
 New Orleans itself was closed for more than a month. Thus, major transportation companies such as CSX were forced to bring in workers from other locations to staff reconstruction projects

IRF International Road Federation	ASU
Decision Frameworks and Mo	dels
to Address Climate Change	e
 The exceptions were 750 structures on st and 11 major toll bridges, which were hele standard both to protect the substantial in these major structures and to ensure that transportation lifelines would remain in se a major seismic event to provide access f responders 	tate highways d to a higher nvestment in t these vital ervice following for emergency
 The experts devised a layered screening	system to rate
the structures most in need of retrofit; an	in-depth
physical inventory was conducted only fo	r those bridges
that did not meet the performance standa	ard

IRF International Road Federation	
Decision Frameworks and Models to Address Climate Change	
To begin, they might ask the following questions:	_
Which projected climate changes are most relevant for their region?	
How are climate change hazards likely to be manifested (e.g flooding, storm surge coupled with sea level rise)?	.,
Which transportation assets may be affected?	
How severe must a hazard be before it becomes relevant an action is required? Can thresholds be identified?	d
How likely is it that a projected hazard will exceed the threshowhen, and where?	old,
How much risk can be tolerated, or in other words, what infrastructure performance level is tolerable?	

GIRF International Road Federation	n ASU
Multimodal Planning and I Climate Char Current U.S. Fuel Efficiency Po	Policy Options to Mitigate nge Impacts plicies: The Federal Level
 Alternative Fuel and Vehicle Tax Incentives: Tax credits are available for households that purchase energy-efficient vehicles, manufacturers building energy-efficient vehicles, and gas stations that supply alternative fuels 	 Renewable Fuels Mandate: Federal government requires a certain percentage of gasoline consist of fuel from renewable resources (8% in 2010). This percentage has increased over the past several years

IRF International Road	l Federat	tion				
Multimodal Planning and Policy Options to Mitigate Climate Change Impacts						
Euel efficiency	Country or Region	Model Year Effective	Standard Type	Unadjusted Fleet Target or Measure	Structure	Targeted Fleet
standards have	United States	2016	Fuel economy, GHG	34.1 mpg (14.5 km/L) or 250 g of CO ₂ /mile (155 g of CO ₂ /km)	Footprint-based corporate average	Cars, light trucks
decades	Canada (proposal)	2016	GHG	155 g of CO ₃ /km	Footprint-based corporate average	Cars, light trucks
Some current	European Union	2015	GHG	130 g of CO,/km	Weight-based corporate average	Cars, light trucks
ettenderde from	Australia	2010	GHG	222 g of CO ₃ /km	Single average	Cars, light trucks
around the world	Japan	2015	Fuel economy	16.8 km/L	Weight-based corporate average	Cars
are shown here:	China (proposal)	2015	Fuel economy	14.2 km/L	Weight-based pervehicle and corporate average	Cars, light trucks
	South Korea (proposal)	2015	Fuel economy, GHG	17 km/Lor 140 g of CO ₂ /km	Weight-based corporate average	Cars, light trucks
	Source: German	and Lutsey 2010	2.			
1. Transportation Research Board, Policy Op Transportation. TRB Special Report 307, nat	tions for Redu onal Research	cing Energy n Council, V	/ Use and /ashington	Greenhouse Gas D.C. (2011)	Emissions from	n U.S.

() IRF	International Road Federation	ASU
Mu	Iltimodal Planning and Policy Options to Mitigat Climate Change Impacts	te
 Tax end 	xes, tax credits, and rebates can be used to courage acceptance of fuel efficient vehicles	
 Ma veł 	ny countries currently place a tax on "gas-guzzler" nicles	
 A " wo and 	Feebate" is a proposed government program that uld provide both financial incentive for fuel efficiend d disincentive for fuel inefficiency	су
	All new vehicles would be tested to determine their emission performance with respect to some standard	s
_	Consumers would be charged a graduated fee or rebate bas on by how much the vehicle falls below or exceeds the threshold, respectively	ed

1	n	D	F
1		Ν.	С,

International Road Federation

Multimodal Planning and Policy Options to Mitigate Climate Change Impacts

	France	Ireland	Germany	United States	Canada
Type of program	Feebate	Fee (tax only)	Fee (tax only)	Fee (tax only)	Noncontinuous Feebate
Fleet affected	Light-duty vehicles between 96 and 25 mpg	Light-duty vehicles between 49 and 28 mpg	All light-duty vehicles	Cars less than 22.5 mpg	Light-duty vehicles, varied mpg coverage
Pivot point	About 42 mpg	N/A	N/A	N/A	~ 24 mpg for cars, 22 mpg for others
Deviations from a true feebate system	Incomplete coverage; Not continuous	Fees only; Incomplete coverage; Not continuous	Fees only; Annual only; Some fees based on engine size	Fees only; Does not cover majority of the fleet; Not continuous	Differing feebate by vehicle type: Does not cover majority of fleet; Not continuous
1. Transportat	tion Research Board,	Policy Options for R	educing Energy Use a	continuous and Greenhouse Ga	is Emissions from U.S.

IRF International Road Federation	ASU
Multimodal Planning and Policy Options to Mitig Climate Change Impacts	ate
 In the U.S., the availability of off-street parking in ma urban centers drives the market price of parking to z 	any ero
 Shoup (1997, 2006, and 2007) has studied the cost parking extensively and recommends parking pricing a means of reducing personal automobile travel 	of g as
 Charging market-clearing prices for on and off-street parkin Eliminating or re-evaluating mandates on how much parkin developers must provide 	ig g
 Providing workers with cash or transit credits in exchange f using company parking spaces 	or not

IRF International Road Federation	
Multimodal Planning and Policy Options to Mitigate Climate Change Impacts	
 Policies can be implemented on government owned and operated roadways that reduce fuel emissions for freight vehicles 	
 The European Union limits truck speeds to about 56 mph (90 km/h) to meet optimal fuel efficiency 	
 Dedicated truck lanes would allow lower speeds and less stop- and-go traffic for freight vehicles 	
 Intelligent transportation systems (ITS) such as automated toll collection, real time congestion updates, etc. can aid in fuel efficiency 	
 Similar policies can be implemented in government- controlled air space for airline travel 	

GIRF International Road Federation	ASU
Multimodal Planning and Policy Options to Mitig Climate Change Impacts	jate
Summary of policy options:	
 Fuel taxes not only increase the cost of gas, but als stabilize it 	O
 Research needed to understand consumer response to increased fuel cost and price elasticity 	
 More strict fuel efficiency standards 	
 Policies should be implemented in such a way that vehicle performance and occupant safety is not compromised)
 Financial incentives such as the "feebate" 	
 Low-carbon fuel standards that encompass large re or entire countries 	gions

IRF International Road Federation					
Sustainable Land Development					
 Larger residential lot sizes are at least partly responsible for the rapid decline in density 					
 From 1987 to 1997, the density of the average urban acre declined from 1.86 dwelling units (DUs) per acre to 1.66 DUs per acre 					
 Current models of land development predict constantly decreasing density the farthest from 					
 Centrality indicates the extent to which land development in a region spreads out from a single senter 					
 Density gradient measures the average population density at increasing intervals from the point of concentration 					

	International Road Federation	ASU
	Sustainable Land Development	
 Res VM by a - S - N - N - T 	earch into the relationship between T and land use is made more complex a lack of standard metrics Simply measuring the built environment in terms of density overlooks the effects of the other "5 0's" Many typical measurements for vehicle usage exist in literature, but there is not a standard one sed in land-use studies The change in VMT as a result of land-use atterns is highly dependent on geographic scale	

	nternational Road Fe	deration			S.I
Sustainable Land Development					
TABLE 3-1 Elasti from Selected St	city Estimates of Changes in tudies and Surveys of the Lit	VMT Relative f rerature	to Changes in the Bu	uilt Environment	
Authorship	Built Environment Feature	Scale	Geographic Location	Percentage Increase in Built Environment Feature	Percentag Reduction in VMT
Ewing and Cervero (2001, 111)°	Density Diversity (land use mix)	Neigh borh ood Neigh borh ood	Multiple locations	100 100	5 5
	Design Density, diversity, and design Accessibility	Neighborhood Neighborhood Regional		100 100 100	3 13 20
Bento et al. (2005, 475–477) ⁶	Cityshape, jobs– housing balance, road density, rail supply (for rail cities)— each variable alone	Regional	114 U.S. MSAs	100	57
	Population centrality alone	Regional	114 U.S. MSAs (without New York)	100	15
	All built en vironment variables	Regional	Atlanta, GA; Boston, MA	Various	25
Brownstone and	Density	Regional	Ca lifornia	100	12

	rnational Road Federation	ASU
	Sustainable Land Development	
 Transit- use tran 	Oriented Development (TOD): travelers ter sit 2-5 times more than other users	nd to
 Must ke transit u 	ep in mind that a primary reason for higher use is self-selection	TOD
 Many use tr 	residents locate in TODs precisely because they w ansit	ant to
The der different commut	nographic profile of TOD residents is often t from the profile of residents in surrounding nities	g
– Туріса	ally smaller households without children	

IRF International Road Federation

Sustainable Land Development

 Greater density and therefore shorter trips can increase trip frequencies, but empirical evidence suggests that the increase is not enough to off set the reduction in VMT that comes from reduced trip lengths alone

Area	Transit Mode Share (percent)	Walking Mode Share (percent)	Automobile Mode Share (percent)	VMT per Capita	Automobile Ownership per Household
Neighborhoods with mixed use and good transit	11.5	27.0	58.1	9.80	0.93
Neighborhoods with good transit only	7.9	15.2	74.4	13.28	1.50
Remainder of Multnomah County	3.5	9.7	81.5	17.34	1.74
Remainder of the region	1.2	6.1	87.3	21.79	1.93

Mode Choice: Journey to Work					
d, OR					
, 0					
, 0					
)					
)					
%					

GIRF International Road Federation		ASU				
Modal Speeds						
Mode	MPH					
Car	31.0					
Van	31.7	TOM'S SHELL				
SUV	33.0	Self Cash or Serve Credit				
Pickup truck	33.7	Regular ARM 9				
Other truck	42.4	Plus LEG ⁹				
RV	45.1	Premium First 9 Born				
Motorcycle	32.2					
Local public transit bus	7.9					
Commuter bus	17.1					

